2023: Ученые продвинулись в изготовлении линз будущего
Физики из МФТИ и Физического института им. П. Н. Лебедева представили обновленную схему для производства микроскопических приборов в виде комбинации асферической микролинзы и массива микролинз, полученных методом двухфотонной литографии. Полученные результаты имеют широкий спектр применения в производстве сложных оптических устройств, оптимизированных микрообъективов для высокоточного измерения кривизны волнового фронта и изготовления преломляющих рентгеновских линз. Работа опубликована в журнале Physics of Wave Phenomena. Об этом 21 ноября 2023 года сообщила представители МФТИ.
Как сообщалось, развитие технологий в астрофотонике, нанофотонике, оптоэлектронике и других областях потребовало повысить качество получаемых изображений. Это привело к появлению следующего поколения микрооптических устройств, а именно — матриц микролинз. Массивы микролинз (также называемые микролинзовыми матрицами или матрицами линз) используются для увеличения коэффициента оптического заполнения. Эти системы линз служат для фокусировки и концентрации света на поверхности фотодиода вместо того, чтобы позволять ему падать на нефоточувствительные области устройства.
Благодаря своим функциональным возможностям, малому размеру, легкому весу матрицы микролинз приобрели большую известность и применимость. Тем не менее производство таких объектов остается нелегкой задачей. Существует множество способов производства, но каждому из них свойственны недостатки. Например, травление сфокусированным ионным лучом и электронно-лучевое травление сравнительно сложны и дороги, технология микроэлектроэрозионной обработки требует специальной подготовки компонентов для достижения оптимального качества изделия, а термолитография и УФ-лазерная фотолитография с прямой записью требуют точного контроля тепла и других внешних параметров.
Асферические микролинзы и матрицы микролинз позволяют оптимизировать эффективность различных оптических устройств. Однако производство таких изделий технологически сложно. Проблема возникает из-за невозможности изготовления микролинз произвольного профиля в области характерных размеров в несколько десятков микрометров с использованием традиционных технологий, таких как одноточечное алмазное фрезерование и термическое оплавление. В своей работе мы выверили комбинацию асферической микролинзы и массива микролинз, сделанных нами методом прямой лазерной записи с двухфотонной полимеризацией. Эта структура была нами спроектирована и оптимизирована с использованием методов компьютерного моделирования. пояснил Алексей Витухновский, заведующий лабораторией технологий 3D-печати функциональных микроструктур МФТИ |
Для создания массива микролинз ученые использовали технологию многофотонной литографии (также известной как прямая лазерная литография, или DLW). Решение авторы объяснили сравнительной легкостью в реализации и дешевизной технологии. Литография в микро- и наноэлектронике — это формирование в специальном чувствительном слое (резисте), нанесенном на поверхность подложки, рельефного рисунка, повторяющего топологию микросхемы, с последующим переносом этого рисунка на подложки. Принципиальным отличием многофотонной литографии является использование двухфотонного поглощения для изменения растворимости резиста, что позволяет добиться четкости полученного рисунка.«Трансформация 2.0». Опыт роста технологической зрелости ритейлера «Лента» представлен на TAdviser SummIT
В результате математического моделирования с использованием программы Zemax ученые нашли наиболее оптимальные параметры линз: для линз массива радиус кривизны R = 5,6 мкм, фокусное расстояние f = 10,9 мкм, числовая апертура NA = 0,5, апертура 5,5 мкм. Моделируемая система включала источник света, асферическую микролинзу, массив микролинз и многожильное оптическое волокно (с семью жилами). Для асферической линзы был выбран специальный радиус кривизны, что позволило оптимизировать оптические характеристики и исправить сферические аберрации. Исследователи сделали асферическую линзу параболической формы с радиусом кривизны R = 24 мкм, фокусным расстоянием f = 46,7 мкм, числовой апертурой NA = 0,43 и апертурой 40,2 мкм. Расстояние между асферической линзой и микролинзами было оптимизировано для максимизации сигнала моделируемой системы.
В ходе послойного изготовления линз было использовано большое количество слоев малой толщины, что позволило уменьшить шероховатость и тем самым увеличить их оптические качества. Для литографии использовался лазер с длиной волны 780 нм.
Изображения для анализа структуры были получены с помощью конфокального микроскопа. Для получения изображения в молекулах фотоинициатора, входящих в материал линз, возбуждалась люминесценция непрерывным воздействием аргонового лазера с длиной волны 458 нм. Шаг измерения при сканировании — 0,05 мкм, что равно высоте слоев, из которых составлены линзы, что позволило точно сопоставить результаты измерений и численного моделирования. Полученные данные показали, что результат согласуется с результатами численного моделирования.
Разработка будет применима в сферах, где используются датчики волнового фронта. Такие датчики позволяют измерять кривизну волнового фронта и передавать данные на обрабатывающие устройства, что позволяет изменять форму или положение линз или зеркал. Это используется в адаптивной оптике, в частности, в астрономии для компенсации турбулентностей атмосферы и погодных явлений во время наблюдения с Земли. Также они используются в производстве и исследованиях в лазерных приборах, оптике, космической астрономии, в производстве контактных и интраокулярных линз, в том числе оптических элементов для мобильных телефонов, микроскопов и объективов фотоаппаратов.
Работа выполнена при поддержке Российского научного фонда, проект № 22-79-10153.