Проект

"Технониколь" автоматизирует визуальный контроль качества готовой продукции

Заказчики: Технофлекс

Рязань; Строительство и промышленность строительных материалов

Продукт: Искусственный интеллект (ИИ, Artificial intelligence, AI)

Дата проекта: 2020/09 — 2021/02
Технология: Big Data
подрядчики - 225
проекты - 629
системы - 237
вендоры - 194
Технология: Data Mining
подрядчики - 252
проекты - 849
системы - 291
вендоры - 209
Технология: Data Quality - Качество данных
подрядчики - 196
проекты - 1055
системы - 60
вендоры - 42
Технология: Робототехника
подрядчики - 270
проекты - 532
системы - 539
вендоры - 395
Технология: Системы видеонаблюдения
подрядчики - 336
проекты - 842
системы - 683
вендоры - 326
Технология: Системы видеоаналитики
подрядчики - 174
проекты - 473
системы - 362
вендоры - 240

2021: Пилотный проект по автоматизации визуального контроля качества готовой продукции

Корпорация ТехноНИКОЛЬ 10 марта 2021 года сообщила, что на базе рязанского завода «Технофлекс» реализует пилотный проект по автоматизации визуального контроля качества готовой продукции. На производственной линии внедряется система, которая с помощью искусственного интеллекта круглосуточно анализирует технологический процесс и выявляет отклонения внешнего вида выпускаемого полотна или упаковки и маркировки.

На нескольких участках производственной линии камеры высокого разрешения непрерывно осуществляют съемку полотна. Полученная видеоинформация обрабатывается компьютером с применением технологии искусственной нейронной сети, которая фиксирует все визуальные отклонения от эталонного значения. Система способна «разглядеть» мельчайшие изменения инспектируемой поверхности площадью от 1 мм2 или посторонние включения диаметром более 3 мм при скорости движения готовой продукции не менее 1,6 метра в секунду.

«
Мы производим материалы самых широких номенклатур с большой вариативностью поверхностей. Например, у нас более полутора десятков видов защитных пленок с логотипом, которые система без остановки линии должна пропускать дальше, но в случае появления дефекта пленки она должна остановить выпуск материала и выдать звуковой сигнал, – комментирует Сергей Сухоручкин, начальник технического отдела направления «Битумные материалы и Гранулы» Корпорации ТЕХНОНИКОЛЬ. – И если человек может, не задумываясь на уровне подсознания, определять любые изменения внешнего вида готовой продукции, то системе это надо «объяснить» – описать и классифицировать каждый дефект, переведя его в цифру. Обучение искусственной нейронной сети идет непрерывно, и, чем больше будет обработанная человеком выборка, тем нейросеть будет быстрее и точнее проводить анализ полученных изображений.
»

Система сохраняет в базе данных фотографию, дату, время, наименование материала, номер смены по каждому выявленному отклонению и архивирует его.

При выявлении на участке несоответствующего события интерфейс системы мониторинга оповестит об этом персонал с помощью звуковых и световых индикаторов. Если выявлено более 70% от определяемого отклонения, то подается сигнал в реле намоточного станка на мгновенное прекращение намотки полотна в рулон и включается непрерывное оповещение персонала об остановке линии. ИТ-директор «Роснефти» Дмитрий Ломилин выступит на TAdviser SummIT 28 ноября

После намоточного станка продукция перемещается на следующий участок, где рулон проходит визуальный контроль на соответствие упаковки и маркировки стандарту. На этом этапе при обнаружении отклонений помимо светового и звукового сигналов в программу управления поступает команда на запрет перемещения продукции по линии до устранения несоответствия.

При успешной реализации пилотного проекта ТЕХНОНИКОЛЬ намерена приступить к масштабированию технологии на заводах направления «Битумные материалы и Гранулы» в других регионах РФ.