Разработчики: | IBM |
Дата последнего релиза: | 2019/04 |
Отрасли: | Информационные технологии |
Технологии: | BI |
Содержание |
IBM SPSS Statistics Subscription — статистическое программное обеспечение, позволяющее решать множество исследовательских и бизнес-задач с помощью средств специального анализа, тестирования гипотез, геопространственного и предсказательного анализа.
IBM SPSS Statistics применяется для анализа данных и тенденций, прогнозирования и планирования, проверки предположений и подготовки обоснованных выводов. Решение может быть полезно для работы аналитиков, управленцев, руководителей отделов продаж, ИТ и т.д.
2019
Старт продаж на платформе MerliONCloud
18 апреля 2019 года компания MERLION, российский VAD-дистрибьютор, в рамках развития платформы Merlioncloud, сообщает о старте продаж двух продуктов - IBM SPSS Statistics Subscription и IBM Watson Studio Desktop Subscription. Подробнее здесь.
Однофакторный дисперсионный анализ с повторными измерениями
В апреле 2019 года вышло очередное обновление ПО IBM SPSS Statistics Subscription.
Процедуры анализа
- Квантильная регрессия:
- Моделирует взаимосвязь между набором переменных предикторов (независимых) и определенными процентилями (или "квантилями") целевой переменной (зависимой), чаще всего медианой. Дополнительную информацию смотрите в разделе Квантильная регрессия.
- Квантильная регрессия не делает предположений о распределении целевой переменной, проявляет тенденцию компенсировать влияние наблюдений-выбросов и широко используется для исследований в практических областях, таких как экология, здравоохранение и финансовая экономика.
- ROC-анализ:
- Оценивает точность предсказаний модели путем постройки графика чувствительности в зависимости от значения (1 минус специфичность) теста классификации (поскольку порог различен по всему диапазону результатов диагностического теста). ROC-анализ поддерживает вычисление данных площади под кривой, кривых точность-полнота (precision-recall, PR) и опции для сравнения двух ROC-кривых, сгенерированных либо для независимых групп, либо для парных объектов. Дополнительную информацию смотрите в разделе ROC-анализ.
- Байесовская статистика:
- Добавлен однофакторный дисперсионный анализ с повторными измерениями. Эта процедура измеряет один фактор одного и того же объекта в каждый отдельный момент времени или при каждом условии. Предполагается, что для каждого объекта есть единственное наблюдение для каждого момента времени или условия (то есть взаимодействие обработки объектов не учитывается).
- Усовершенствования единственной биномиальной выборки. В одновыборочной процедуре байесовского вывода (для биномиально-распределенных данных) можно взять за основу биномиальное распределение. Рассматривается параметр π, вероятность успеха при данном числе испытаний, которые могут оканчиваться успехом или неудачей. Испытания не зависят друг от друга, и вероятность π остается неизменной во всех испытаниях. Биномиально-распределенную случайную величину можно считать суммой данного числа независимых испытаний, подчиняющихся распределению Бернулли.
- Усовершенствования единственной пуассоновской выборки. В одновыборочной процедуре байесовского вывода (для биномиально-распределенных данных) можно взять за основу распределение Пуассона. Распределение Пуассона — полезная модель для редких событий; в ней предполагается, что для коротких интервалов вероятность того, что событие наступит в течение данного интервала, пропорциональна времени ожидания. Когда байесовский статистический вывод делается на основе распределения Пуассона, сопряженное априорное распределение выбирается в семействе Гамма-распределений.
- Анализ надежности:
- Процедура обновлена и теперь предоставляет опции для статистики каппы с несколькими аттестующими по Флейсу, которые оценивают согласие межреспондентных оценок, чтобы определить надежность среди различных экспертов. Более высокое согласие предоставляет более высокий показатель доверия в рейтингах, отражающих истинные обстоятельства. Опции для статистики каппы с несколькими аттестующими по Флейсу доступны в диалоговом окне Анализ надежности: Статистики.
Улучшения команд
- Команда GENLINMIXED:
- Структуры с типом ковариационной матрицы ARH1 & CSH, Случайные эффекты. Опции CSH и ARH1 добавлены в подкоманду /RANDOM (ключевое слово COVARIANCE_TYPE).
- Структуры с типом ковариационной матрицы ARH1 & CSH, Повторяющиеся эффекты. Опции CSH и ARH1 добавлены в подкоманду /DATA_STRUCTURE (ключевое слово COVARIANCE_TYPE).
- Метод степеней свободы Кенварда-Роджера. К подкоманде /BUILD_OPTIONS (ключевое слово DF_METHOD) добавлена опция KENWARD_ROGER.
- Типы ковариации Кронекера. Опции UN_AR1, UN_CS, UN_UN добавлены в подкоманду /DATA_STRUCTURE (ключевое слово COVARIANCE_TYPE).
- Создать ключевое слово KRONECKER_MEASURES. Ключевое слово используется для определения списка переменных для подкоманды /DATA_STRUCTURE. Ключевое слово должно использоваться, только когда COVARIANCE_TYPE - это один из трех типов Кронекера. Правила для KRONECKER_MEASURES совпадают с REPEATED_MEASURES. Когда действуют обе спецификации, у них могут быть, а могут не быть общие поля, но их значения не могут в точности совпадать (независимо от совпадения или несовпадения их порядка).
- Команда MIXED:
- В подкоманде CRITERIA введено ключевое слово DFMETHOD.
- В подкоманде REPEATED добавлено ключевое слово KRONECKER. Ключевое слово должно использоваться, только когда COVTYPE - это один из трех следующих типов Кронекера.
- К ключевому слову COVTYPE подкоманды REPEATED добавлены опции UN_AR1, UN_CS и UN_UN.
2017: Поддержка байесовской статистики
В результате выхода обновления от августа 2017 года SPSS Statistics стал поддерживать байесовскую статистику. Байесовский вывод - метод статистического вывода, в котором используется теорема Байеса о том, как изменяется вероятность гипотезы после получения дополнительной информации.
Поддерживаются следующие Байесовские статистики:
- Одновыборочные критерии Стьюдента и двухвыборочные критерии Стьюдента для зависимых выборок
- Биномиальные пропорциональные критерии с одной выборкой
- Анализ распределения единственной выборки, пуассоновской
- Связанные выборки
- t-критерий для независимых выборок
- Попарные корреляции (Пирсона)
- Линейная регрессия
- Однофакторный дисперсионный анализ
- Логлинейная регрессия
Оптимизация предварительного просмотра вывода "Копировать как"
Теперь можно щелкнуть правой кнопкой мыши по выбранному объекту в предварительном просмотре вывода и выбрать Правка > Копировать как, чтобы сделать копию этого объекта в определенных форматах (например, Все, Изображение или Графический объект Microsoft Office). Если выбрать Правка > Копировать, то будет скопировано Всё.
Подрядчики-лидеры по количеству проектов
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение систем по количеству проектов, не включая партнерские решения
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)