Проект

"СК Югория" внедрила корпоративную ModelOps-платформу в среду применения

Заказчики: Югория ГСК

Ханты-Мансийск; Страхование

Продукт: Проекты ИТ-аутсорсинга

Дата проекта: 2023/07 — 2024/01
Технология: ИТ-аутсорсинг
подрядчики - 861
проекты - 2685
системы - 187
вендоры - 124

2024: Внедрение ModelOps-платформы

Группа страховых компаний Югория внедрила корпоративную ModelOps-платформу в среду применения. Проект реализован на открытых технологиях компанией GlowByte, которая сообщила об этом 20 февраля 2024 года. Созданное пространство представляет собой единую платформу, объединяющую сотрудников, занимающихся разработкой и внедрением ML-моделей во всей компании. Решение позволило быстро создавать модели, проводить их обучение и интегрировать их в рабочие процессы.

Платформа отвечает главному требованию страховщика – обеспечивает удобство использования инструмента для всех категорий пользователей, от разработчиков до ИТ. Это было достигнуто благодаря внедрению методологии разработки, организации рабочей среды для команды Data Science и созданию системы, способной легко масштабироваться под потребности бизнеса.

«
Основной вызов – сделать MLOps доступным и с точки зрения обслуживания, и с точки зрения разработки, в то же время не лишить решение гибкости. Нашей целью было не просто установить компоненты, а дать пользователям удобную и понятную методологию, которая позволит решать более сложные задачи. Выбранный технологический стек позволил эффективно закрыть потребности заказчика. Кроме того, эти инструменты относительно легко поддерживать, – отметил Григорий Шутов, старший архитектор Advanced Analytics GlowByte.
»

Платформа интегрирована с источниками данных страховщика и состоит из различных инструментов кластера Kubernetes.

ML-модели разрабатываются посредством JupyterLab, а с помощью инструмента Gitlab CI/CD построен единый пайплайн вывода модели от стадии разработки до применения в продакшене. В качестве оркестратора применения ML-моделей используется Airflow.

«
Нам удалось построить удобное и быстрое решение для MLOps, доступное не только финансовым организациям, но и заказчикам, которые только начинают строить ML в своей инфраструктуре. Это еще один хороший пример сборки на Open source в страховом секторе,
сказал Евгений Чернобуров, руководитель страховой практики GlowByte.
»

В перспективах проекта – развитие и реализация бэклога, улучшение КХД и интеграции со стороны ML, выстраивание оптимальных процессов. Планируется увеличение количества моделей и команд разработки, а также внедрение новых инструментов и их кастомизация под требования.