Заказчики: Иркутский государственный университет НИИ биологии Подрядчики: Яндекс.Облако (Yandex Cloud), MaritimeAI Продукт: Yandex DataSphereДата проекта: 2020/12 — 2022/11
|
Технология: IaaS - Инфраструктура как услуга
|
Содержание |
2022
Выпуск нейросети для экомониторинга в открытый доступ
Облачная платформа Yandex Cloud 20 декабря 2022 года опубликовала исходный код алгоритма машинного обучения для экомониторинга Байкала. Технология помогает анализировать пробы воды: определять и классифицировать содержащиеся в ней микроорганизмы. Теперь биологи и ML-специалисты по всему миру смогут использовать нейросеть для разработки собственных систем мониторинга водоемов и отслеживать важные экологические тренды. Алгоритм опубликован на GitHub по открытой лицензии Apache 2.0.
В открытый доступ выложены датасеты, модели машинного обучения и документация для мониторинга. Такой набор поможет тестировать гипотезы по детекции, сегментации и классификации объектов в разных научных проектах. В частности разработчики смогут выявлять проблемы в балансе микроорганизмов водных объектов, и следовательно — помогать сохранять водоемы в неизменном состоянии дольше.
Доступность технологий — один из наших ключевых приоритетов. Яндекс не только систематически выкладывает в опенсорс свои собственные решения, но и помогает развивать открытый исходный код в совместных проектах со сторонними разработчиками. Публикуя алгоритм экомониторинга с MaritimeAI, мы продолжаем следовать нашим главным принципам. Разработка поможет не просто решить задачу конкретной научной группы, а тестировать гипотезы о состоянии водных объектов повсюду. Ведь Байкал — далеко не единственное место на планете, где ведется подобный мониторинг, — рассказал Алексей Башкеев, руководитель платформы Yandex Cloud. |
Запуск нейросети
Команда ученых и разработчиков запустила нейросеть для экомониторинга Байкала на облачной платформе Yandex Cloud. Об этом 23 сентября 2022 года сообщил Яндекс. Алгоритм машинного обучения (ML) анализирует пробы воды из озера, определяет и классифицирует содержащиеся в ней микроорганизмы. Уже на конец сентября 2022 года нейросеть умеет работать с 70 формами планктона, которые чаще всего встречаются в пробах. Внедрение искусственного интеллекта упростит работу биологов, которые много лет подсчитывали и определяли микроорганизмы вручную.
Проект мониторинга экосистемы озера «Точка №1» длится с 1945 года. Его ведут специалисты НИИ биологии Иркутского государственного университета. Более 75 лет в одной точке озера регулярно берут пробы воды с глубины до 250 метров. Потом ученые анализируют фито- и зоопланктон в пробах и отслеживают, как меняется состав и состояние озера, выделяют климатические тренды. Нейросеть в проекте помогает биологам автоматизировать весь цикл мониторинга и, впоследствии, быстрее получать данные для новых исследований. Вместе с учеными НИИ нейросеть разрабатывали компания MaritimeAI, команда платформы Yandex Cloud и Фонд поддержки прикладных экологических разработок и исследований «Озеро Байкал».Как «Полюс» отказывается от SAP. Опыт российского лидера золотодобычи представлен на TAdviser SummIT
Биологи предоставили почти 50 тысяч изображений проб, из которых 20 тысяч было использовано для обучения алгоритмов. Теперь изображения проб с микроскопов автоматически передаются в облачную платформу Yandex Cloud. Алгоритм определяет мельчайших рачков, их видовую принадлежность и формирует отчетные карточки. Нейросеть продолжает обучаться в сервисе для разработки и эксплуатации ML-алгоритмов Yandex DataSphere. Разметка данных происходила с помощью краудсорсингового сервиса Толока.
В будущем участники проекта планируют масштабировать мониторинг и отслеживать состояние воды в других точках Байкала. Также разработчики последовательно будут выкладывать в open source технологии, которые используются в проекте. Это поможет разрабатывать собственные системы мониторинга водоемов другим научным группам и институтам по всему миру.
В перспективе алгоритм может стать фундаментом национальной или даже глобальной системы мониторинга водоемов. Эта система позволит решать такие задачи, как контроль биологической безопасности и распространения инвазивных видов; экологический контроль состояния водных местообитаний; контроль и прогнозирование продуктивности водоемов для интересов рыборазведения и рыболовства. Также алгоритм можно использовать как инструмент для описания и открытия новых видов, сказал Максим Тимофеев, доктор биологических наук, директор НИИ биологии ИГУ.
|
Научное сообщество и образовательные организации делают все больше открытий в облаке. Одна из приоритетных задач нашей платформы – создать надежный трамплин для легкого использования облачных сервисов в исследовательских проектах. В Yandex Cloud запускали систему мониторинга урожая, создавали алгоритм для беспилотного гоночного болида, исследовали темную материю. Нейросеть для экологического мониторинга Байкала – особый проект и для нас, и для всего сообщества, невероятный по своему масштабу и значимости, добавил Алексей Башкеев, генеральный директор облачного провайдера Yandex Cloud.
|
Для нас нейросеть является хорошим примером построения систем поддержки принятия решений и применением ML в области экологии. Хотя внутренние алгоритмы не являются прорывными с точки зрения архитектуры нейронных сетей, их комбинация позволяет решать сложные задачи. Еще один нюанс – постоянно меняющиеся данные. В рамках проекта нам постоянно будут попадаться новые объекты. Благодаря этому наша сеть, ей подобные и в целом подход Active Learning будут получать все более широкое применение, отметил Сергей Орешков, специалист по компьютерному зрению MaritimeAI.
|
Начало работы нейросети – важный шаг в развитии самого длительного проекта по регулярному экологическому мониторингу озера Байкал. Цифровизация проекта стала возможной исключительно благодаря многостороннему партнерству между бизнесом, наукой и гражданским обществом, экспертизе каждого из вовлеченных участников. Надеемся, что этот кейс внедрения нейросети заложит основу для использования технологии искусственного интеллекта и на других точках экологического мониторинга и популяризирует практику межсекторального сотрудничества в интересах устойчивого развития, рассказала Евгения Елькина, старший менеджер Фонда поддержки прикладных экологических разработок и исследований «Озеро Байкал».
|
2021: Создание алгоритма для мониторинга экосистемы Байкала
22 июня 2021 года стало известно о том, что объединённая команда учёных и разработчиков создаст нейросетевой алгоритм для мониторинга экосистемы Байкала. Алгоритм будет автоматически анализировать пробы байкальской воды, распознавать и классифицировать содержащиеся в ней микроорганизмы. Такой анализ облегчит работу учёных, которым на июнь 2021 года приходится различать более 400 видов байкальского планктона и систематизировать данные вручную.
Данное технологическое решение будет использоваться в проекте экологического мониторинга Байкала «Точка №1». Проект заключается в регулярном анализе фито- и зоопланктона в воде озера. Наблюдения показывают, как развивается экосистема Байкала и как на неё влияет изменение климата на планете. Алгоритм позволит не только автоматизировать анализ планктона, но и масштабировать проект, открыв новые точки наблюдения.
В работе над созданием алгоритма принимают участие специалисты НИИ биологии Иркутского государственного университета, разработчики моделей искусственного интеллекта для изучения морских экосистем MaritimeAI, команда облачной платформы Yandex.Cloud и Фонда поддержки прикладных экологических разработок и исследований «Озеро Байкал».
Для обучения алгоритма учёные из НИИ биологии ИГУ предоставили более 1000 снимков каждого вида планктона. На основе этих данных команда Maritime AI создаст механизм классификации видов планктона с использованием Yandex DataSphere — сервиса Yandex.Cloud для анализа данных, разработки и эксплуатации моделей машинного обучения. Изображения микроорганизмов будут передаваться в Yandex.Cloud прямо с микроскопов лаборатории НИИ биологии ИГУ, и алгоритм будет автоматически определять видовую принадлежность планктонных частиц. Предполагается, что алгоритм будет определять до 99% всех видов планктона, а специалисты института биологии будут контролировать качество его работы. Рабочий прототип системы будет представлен уже летом 2021 года.
Проект «Точка №1» появился в 1945 году и входит в Книгу рекордов России как самый длительный проект регулярного экологического мониторинга в истории науки. На протяжении более чем 75 лет учёные каждые 7–10 дней берут пробы воды с глубин от 0 до 800 метров. Накопленные данные позволяют следить за состоянием экосистемы Байкала и прогнозировать её развитие.
В последние годы проект «Точка №1» находился под угрозой закрытия. Методика распознавания данных, которую применяют в проекте, технологически устарела. Ученые определяют виды микроорганизмов с использованием классических методов микроскопии. Для этого специалисту необходимо научиться различать более 400 видов фито- и зоопланктона, подготовка такого специалиста занимает более 10 лет непрерывной практики. Для поддержания проекта потребовалось бы несколько десятков специалистов высокого уровня, согласных при этом на выполнение рутинных операций. Для сохранения и развития проекта ученые НИИ Биологии ИГУ и Фонда «Озеро Байкал» сформулировали цель - создать интеллектуальную систему цифровой поддержки процесса анализа проб с использованием технологии искусственного интеллекта, которую можно обучить распознаванию микроорганизмов, чтобы автоматизировать основной объем рутинной работы ученых.
Практическая реализация задачи упиралась в барьер - создание такой нейросети с нуля требовало технической экспертизы и ИТ-инфраструктуры, которых не было у НИИ биологии ИГУ. Эксперты в области ИИ платформы Yandex.Cloud предложили использовать в проекте облачные вычислительные мощности, а также сервис для ML-разработки DataSphere, который ускоряет разработку моделей искусственного интеллекта. Также команда Yandex.Cloud помогла привлечь в проект экспертов по созданию ML-алгоритмов для изучения морских экосистем - компанию Maritime AI.
На июнь 2021 года учёные определяют виды микроорганизмов с использованием классических методов микроскопии. Для этого им необходимо научиться различать более 400 форм фито- и зоопланктона, на это уходит более 10 лет почти непрерывной работы. В Yandex.Cloud мы решили помочь учёным применить сервис Yandex DataSphere, чтобы облегчить их работу и вывести проект сбора и анализа данных о стоянии Байкала на более высокий уровень, сказал Алексей Башкеев, руководитель платформы Yandex.Cloud.
|
Сообщество фито- и зоопланктона является по сути фундаментом всей экосистемы Байкала. Понимая процессы в этом фундаменте, их динамику, мы можем делать прогнозы по векторам развития всей экосистемы озера. Мониторинговый проект „Точка №1` отличается ем, что позволяет сделать анализ на основе долговременных и непрерывных рядов наблюдений, накопленных за 75 лет. Партнёрство с Yandex.Cloud позволит решить важную задачу по переводу мониторинга с технологических подходов XX века на парадигму XXI века: с ручного анализа проб на методы с использованием машинного распознавания и обучения. При этом мы сможем не только сохранить преемственность всей многолетней программы, но и масштабировать проект, запустив дополнительные точки наблюдений, отметил Максим Тимофеев, доктор биологических наук, директор НИИ биологии ИГУ.
|