Название базовой системы (платформы): | Искусственный интеллект (ИИ, Artificial intelligence, AI) |
Разработчики: | Иннодата (Innodata) |
Дата премьеры системы: | 2018/02/14 |
Дата последнего релиза: | 2022/05/11 |
Отрасли: | Логистика и дистрибуция, Недвижимость, Торговля, Транспорт |
Технологии: | BI, Big Data |
Содержание |
Основные статьи:
2022: Регистрация системы динамического ценообразования DPrice для застройщиков
11 мая 2022 года российский разработчик «Иннодата» сообщил, что зарегистрировал собственный продукт динамического ценообразования в Едином реестре Минкомсвязи российских программ для электронных вычислительных машин и баз данных. DPrice – cистема для обеспечения прозрачности установления цен на объекты недвижимости в девелопменте. Решение имеет преднастроенные шаблоны, гибкие настройки и возможности кастомизации.
DPrice включает набор сервисов для автоматизации трудоемких бизнес-процессов, например индексации цен на объекты недвижимости, определения стартовой цены, анализа исполнения плана и темпов продаж.
Решение функционирует на базе математического алгоритма, который прогнозирует вероятность продажи объектов недвижимости. Платформа предлагает возможность регулировки параметров исчисления роста цен на них в зависимости от требований девелопера и рыночной ситуации. Система легко настраивается под индивидуальные потребности заказчика. «Трансформация 2.0». Опыт роста технологической зрелости ритейлера «Лента» представлен на TAdviser SummIT
Платформа DPrice создавалась на базе технологий искусственного интеллекта (Artificial Intelligence), включая методы оптимизации и машинного обучения (Machine Learning). Решение применимо для снижения рисков в тех случаях, когда компания не имеет инструментов автоматизированной оценки рыночной ситуации. Кроме того, она помогает повышать эффективность принимаемых решений.
«DPrice - специализированный инструмент для застройщиков, учитывающий специфику и множество факторов, необходимых для продаж и сохранения позиций на рынке недвижимости. Реализацией проектов в области прогнозирования спроса и управления ценообразованием мы занимаемся уже давно и это позволило включить в функциональность продукта актуальные практики. У нас уже есть несколько текущих проектов, и мы видим, что спрос на DPrice только растет. На ближайшее будущее запланировано несколько релизов и масштабирование системы на другие отрасли с учетом специфики бизнеса каждой из них», - комментирует исполнительный директор компании «Иннодата» Александр Сергиенко. |
2018
Возможности. Принцип работы. Решаемые задачи
По информации на февраль 2018 года система интеллектуального ценообразования предназначена для автоматизированного точного прогноза и балансировке цен и тарифов.
Принцип работы
Система работает следующим образом: формируются три блока информации на ежедневной основе для пользователей системы.
Блок статистики предусматривает интерактивный отчет, включающий показатели, связанные с динамикой продаж, уровнем цен, активностью клиентов и пр. Предусмотрено получение отчетов разной степени агрегации, начиная от суммарных показателей компании и до уровня конкретного объекта недвижимости.
Блок прогноза предусматривает ежедневно обновляемую вероятность продажи объекта недвижимости в следующем месяце. Результаты прогнозирования могут быть агрегированы вплоть до уровня типа квартир и даже до уровня стояков конкретной секции в проекте.
Блок рекомендаций включает ежедневно обновляемые значения для величины изменений цен на объекты недвижимости, типы квартир, стояки. При этом рекомендации могут настраиваться пользователем, меняться динамически в зависимости от возможностей для изменения цен, складывающихся для конкретного объекта недвижимости по результатам анализа входных составляющих системы.
Возможности
- формирование базовой модели для прогнозирования динамики ценообразования, выявление основных видимых и скрытых факторов, влияющих на динамику развития;
- осуществление построения, оптимизации и мониторинга бизнес-модели;
- проведение высокоточной настройки параметров и переменных, влияющих на ее работу;
- обогащение модели дополнительными данными.
- оценка вероятности совершения сделки;
- расчет ежедневного прогноза по каждой сделке,
- группировка результатов, а также управление ценой на основе фактического спроса на объект: если прогноз по фактическому спросу превышает запланированный, то есть возможность для более частых повышений стоимости.
При этом автоматизирован процесс формирования рекомендаций и замечаний по ведению ценообразования.
Решаемые задачи
Основные бизнес-задачи, которое решает система интеллектуального ценообразования:
- максимизация выручки
- увеличение объема продаж без увеличения расходов
- оперативное реагирование на события, влияющие на ценообразование на высоко-конкурентном рынке
- прогнозирование динамики ценообразования
- учет количества факторов влияния,
- минимизация влияния «человеческого фактора».
Анонс системы интеллектуального ценообразования
Компания «Иннодата» 14 февраля 2018 года представила систему интеллектуального ценообразования. По мнению разработчиков, решение будет востребовано среди девелоперов в строительстве, в ритейле, у транспортно-логистических компаний и крупных сервисных организаций с постоянной линейкой услуг.
Высокая вероятность ошибки вследствие «человеческого фактора» при ручном прогнозировании спроса и предложения делают процесс ценообразования все более сложным, подразумевающим долговременные, трудоемкие и дорогостоящие исследования. Для того чтобы обеспечить эффективность продаж, при формировании оптимальной цены необходимо принять во внимание множество факторов. Сделать это сравнительно быстро поможет система интеллектуального ценообразования от «Иннодаты».
Используя технологии Big data и нейронные сети, специалисты компании разработали подход к пост-обработке получаемых данных, который позволяет добиться высокой эффективности от построенных математических моделей, снизить погрешность и повысить интерпретируемость результата.
Система позволяет спрогнозировать продажи и лучший период для изменения цены, снижение человеческих трудозатрат на процесс формирования стоимости за счет оптимизации бизнес-процесса, осуществляет поддержку в режиме реального времени.
Модель решения сбалансирована и предусматривает около 200 переменных, при этом учитываются факторы сезонности, используются как внутренние, так и внешние определяющие факторы, такие, например, как колебание котировок валют.
Получаемые системой результаты достигнуты с помощью алгоритмов самообучения математической модели (например, с помощью XGBoost). Построение аналитической модели осуществляется на основе нескольких разработанных методов. Модель учитывает исторические данные. Для окончательного завершения обучения проводится обучение модели в режиме реального времени. 90% точности совершения сделки приходится именно на тот период, который отражен в модели. При условии предоставления от 85% и более полноты данных модель корректно предсказывает статистику ожидаемых сделок.
Основной эффект от использования системы интеллектуального ценообразования в бизнес-архитектуре компании заключается в достижении главной цели — максимизации выручки без увеличения расходов, — рассказал Максим Сытников, Product Owner решения, компания «Иннодата». — Эффект для бизнеса от использования системы сложно переоценить: в первую очередь, это максимизация выручки без увеличения расходов, повышение уровня конкурентоспособности, стимулирование спроса, увеличение объема выручки, точная настройка колебаний стоимости за счет прогнозирования будущей сделки, проверка целесообразности рекомендаций и эластичности спроса в режиме реального времени, увеличение дополнительной прибыли за счет гибкого подхода к данным. А в качестве приятного бонуса — оптимизация трудозатрат, например, аналитического отдела, поддерживающего ценообразование в ручном режиме, а также увеличение скорости принятия решения с суток до нескольких минут. |
Заказчик | Интегратор | Год | Проект |
---|---|---|---|
- Магистрат-Дон | Иннодата (Innodata) | 2023.06 | |
- Интеко | Иннодата (Innodata) | 2021.10 |
Подрядчики-лидеры по количеству проектов
Прогноз (250)
Loginom Company (ранее BaseGroup Labs Аналитические технологии) (125)
RBC Group Украина (124)
БизнесАвтоматика НПЦ (119)
Консультационная группа АТК (100)
Другие (2550)
БизнесАвтоматика НПЦ (12)
Форсайт (8)
ФТО (5)
Manzana Group (М Софт) (4)
Softline (Софтлайн) (3)
Другие (74)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
Qlik (QlikTech) (59, 464)
Форсайт (19, 340)
SAP SE (70, 303)
Oracle (65, 267)
Loginom Company (ранее BaseGroup Labs Аналитические технологии) (4, 236)
Другие (1118, 1660)
БизнесАвтоматика НПЦ (1, 12)
Форсайт (3, 8)
Optimacros (Оптимакрос) (1, 6)
Microsoft (1, 5)
Manzana Group (М Софт) (3, 4)
Другие (40, 50)
Optimacros (Оптимакрос) (1, 10)
Форсайт (2, 8)
Manzana Group (М Софт) (2, 5)
Analytic Workspace (ОСТ) (2, 5)
PIX Robotics (Пикс Роботикс) (1, 5)
Другие (38, 59)
Simetra (ранее А+С Транспроект) (1, 13)
Форсайт (2, 9)
VMware (2, 8)
Optimacros (Оптимакрос) (1, 8)
Инфомаксимум (Infomaximum) (1, 8)
Другие (41, 67)
Распределение систем по количеству проектов, не включая партнерские решения
QlikView - 370
Форсайт. Аналитическая платформа (ранее Prognoz Platform) - 321
Deductor - 226
Visary BI Платформа бизнес-аналитики - 119
SAP NetWeaver Business Warehouse (SAP BW/4HANA) - 103
Другие 2022
Visary BI Платформа бизнес-аналитики - 12
Optimacros Платформа для оптимизационного и консолидационного планирования - 6
Microsoft Power BI - 5
Форсайт. Аналитическая платформа (ранее Prognoz Platform) - 5
Qlik Sense - 4
Другие 51
Подрядчики-лидеры по количеству проектов
БизнесАвтоматика НПЦ (120)
Большая Тройка (46)
Сбербанк (14)
Умная Логистика (14)
Доверенная среда (13)
Другие (488)
БизнесАвтоматика НПЦ (12)
РИР (Росатом Инфраструктурные решения) (3)
OneFactor (Уанфактор) ЕдиныйФактор (3)
Сбербанк (2)
Мегапьютер Интелидженс (Megaputer Intelligence) (2)
Другие (45)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
БизнесАвтоматика НПЦ (2, 119)
Большая Тройка (2, 46)
Умная Логистика (2, 14)
Триафлай (1, 13)
Сбербанк (10, 10)
Другие (257, 140)
БизнесАвтоматика НПЦ (1, 12)
РИР (Росатом Инфраструктурные решения) (2, 3)
Мегапьютер Интелидженс (Megaputer Intelligence) (1, 2)
МегаФон (2, 1)
Netrika (Нетрика) (1, 1)
Другие (8, 8)
БизнесАвтоматика НПЦ (1, 5)
РИР (Росатом Инфраструктурные решения) (3, 4)
Сбербанк (2, 2)
DataCatalog (ДатаКаталог) (1, 2)
CM.Expert (АвтоЭксперт) (1, 2)
Другие (17, 18)
БизнесАвтоматика НПЦ (1, 7)
Сбербанк (3, 3)
DataCatalog (ДатаКаталог) (1, 3)
Ростелеком (1, 2)
Цифра (1, 2)
Другие (18, 21)
Распределение систем по количеству проектов, не включая партнерские решения
Visary BI Платформа бизнес-аналитики - 119
Большая Тройка: АИС Редактор территориальных схем - 39
Триафлай BI-платформа - 13
ZIIoT Платформа для работы с промышленными данными - 10
Luxms BI - 8
Другие 137
Visary BI Платформа бизнес-аналитики - 12
PolyAnalyst Платформа визуальной разработки сценариев анализа данных и текстов - 2
Росатом Цифровое теплоснабжение - 2
SODIS Building M - 1
МегаФон: Аналитика городской среды - 1
Другие 7