Разработчики: | Финансовый университет при Правительстве РФ, Федеральный научный агроинженерный центр ВИМ |
Дата премьеры системы: | 2020/11/24 |
Отрасли: | Сельское хозяйство и рыболовство |
Технологии: | Робототехника, Роботы Сервисные |
Основные статьи:
- Роботы (робототехника)
- Сервисные роботы
- Нейросети (нейронные сети)
- Искусственный интеллект в сельском хозяйстве (АПК)
- ИТ в агропромышленном комплексе в мире
- ИТ в агропромышленном комплексе России
2020: Создание умного робота для сбора яблок с применением Microsoft Azure
24 ноября 2020 года Microsoft сообщила о том, что научная группа департамента анализа данных и машинного обучения Финансового университета при Правительстве РФ и отдела интеллектуализации, автоматизации и роботизации сельскохозяйственного производства Федерального научного агроинженерного центра ВИМ в технологическом партнерстве с Microsoft создали умного робота для сбора урожая яблок. Пилотные испытания разработки пройдут в садоводческих предприятиях России уже весной 2021 года.
Нейросетевой алгоритм робота, разработкой которого занимались ученые Финансового университета, способен обнаруживать более 97% и собирать до 90% плодов, при этом доля «ложных срабатываний», когда система принимает за яблоко фоновый объект, составляет всего 3,5%. Эти показатели значительно выше, чем у других роботов такого же назначения: известные прототипы обнаруживают в среднем 85% плодов, а собирают 75%. Для обучения нейросетей использовалось облако Microsoft Azure, что позволило значительно ускорить этот процесс, а также снизить стоимость разработки по сравнению с использованием локальных мощностей.
![]() | Повышение качества обнаружения плодов стало возможно благодаря использованию прогрессивных алгоритмов искусственного интеллекта, в частности, глубоких сверхточных нейронных сетей, которые сочетают в себе способности к распознаванию объектов по цвету, текстуре и форме, – подчеркнул Владимир Соловьев, руководитель департамента анализа данных и машинного обучения Финансового университета при Правительстве РФ. – Надежное и безопасное облако Microsoft Azure не только сделало возможным реализацию этого проекта в принципе, но и помогло нам добиться впечатляющих результатов всего за полтора месяца. | ![]() |
![]() | Садоводство – одна из наименее цифровизированных отраслей сельского хозяйства: сбор урожая большинства плодовых культур обычно производится вручную с привлечением сезонных рабочих, занятых тяжелым физическим трудом, при этом до 40% плодов остаются несобранными. Применение умного робота уже с первого года позволит на 30% увеличить доходы хозяйств за счет сокращения недобора урожая, а также решить проблему нехватки человеческих ресурсов – отметил Игорь Смирнов, заведующий отделом интеллектуализации, автоматизации и роботизации сельскохозяйственного производства ФНАЦ ВИМ. | ![]() |
Робот предназначен для работы в интенсивных садах с высотой крон 1,5 – 2 м. Он собирает плоды, начиная с верхнего яруса, при помощи манипуляторов, оснащенных захватами, созданными специалистами Федерального научного агроинженерного центра ВИМ. Среднее время сбора одного плода составляет 10 секунд, за час он может собрать до 288 килограмм.
![]() | Microsoft в России много работает над тем, чтобы способствовать развитию отечественной науки. В этом проекте наше облако Microsoft Azure открывает практически безграничные возможности перед учеными и практиками, – подчеркнула Елена Сливко-Кольчик руководитель направления по работе с организациями образования и науки Microsoft в России. – Умный робот, созданный Финансовым университетом и Федеральным научным агроинженерным центром ВИМ, - это не только научная разработка, но и решение, которое обеспечит возможности и конкурентное преимущество садоводческим компаниям, сделав их более эффективными. | ![]() |
Планируемая цена робота в среднем в семь раз ниже, чем у зарубежных аналогов, а окупаемость для европейских хозяйств составляет около года. Для российских садоводов будут действовать специальные ценовые предложения. Весной 2021 года пройдут пилотные испытания в крупнейших яблоневых садах России. Затем создатели планируют выводить робота на европейский рынок. В дальнейшем будут разработаны аналогичные алгоритмы для сбора урожая груш и томатов. Кроме того, рассматривается возможность использования устройства для мониторинга урожайности и распознавания основных болезней культур.
Подрядчики-лидеры по количеству проектов
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Данные не найдены
Распределение систем по количеству проектов, не включая партнерские решения
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Подрядчики-лидеры по количеству проектов
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Данные не найдены
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Данные не найдены
Распределение систем по количеству проектов, не включая партнерские решения
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)