Robot Control Meta Language (RCML)

Продукт
Разработчики: Robot Control Technologies
Технологии: Робототехника

Содержание

Российские предприниматели из компании Robot Control Technologies создали инновационную среду Robot Control Meta Language (RCML), которая позволит роботам и роботизированным системам различных производителей взаимодействовать между собой. В перспективе разработка даст возможность существенно расширить сферу использования промышленных роботов на российских производственных предприятиях.

Сегодня ни одно крупное современное производство не обходится без помощи промышленных роботов, которые широко применяются для процессов сварки, перемещения изделий, обработки, окраски, сборки и т.д. Совокупное число промышленных роботов в мире уже превышает 1,3 млн единиц. Согласно прогнозу Boston Consulting Group, к 2025 г. доля задач, решаемых с помощью роботов, достигнет 26%. Российская доля в мировом объеме потребления роботов на данный момент составляет менее 1%, а плотность роботизации — 2 робота на 10 тыс. рабочих. Это обусловлено, в том числе и тем, что технологические процессы на отечественных производствах устарели и нуждаются в модернизации. Среди основных проблем: недостаток знаний о возможностях роботизации, сложность стыковки и координации компонентов роботизированного комплекса, необходимость каждого робота программировать отдельно, нехватка ПО для проектирования, слабая учебная инфраструктура и др.

RCML-язык, разработанный новаторами из Перми, позволит специалисту настроить взаимодействие роботов по заданному алгоритму вне зависимости от технических навыков. Для этого был подготовлен специальный учебник, в котором описаны основные элементы нового языка программирования, примеры использования и решения задач по программированию робототехники. Сами роботы программируются автоматически на основе текущего набора поставленных задач, их приоритетов и ситуации в производственной ячейке.

«Как ни банально звучит, но все началось с идеи. Мы хотели создать универсальное решение для всех типов роботов без исключения. Первоисточником идеи был Дмитрий Сутормин — со-основатель проекта RCML, и он заразил этой идеей меня. Так, в 2014 году у нас получился творческий R&D, и мы начали разработку, — рассказал Михаил Тюлькин, со-основатель проекта Robot Control Meta Language. — Однако с осени 2015 мы поняли, что нужно сузить направление, и сфокусировались на промышленном секторе робототехники. Мы облекли идею в форму: от архитектуры программных компонентов до встраивания в существующую экосистему решений в промышленной робототехнике — по сути первого MVP. Сейчас всю разработку ведет команда программистов в Перми, все они — выпускники пермских университетов».

Основная цель, которую ставят перед собой разработчики — максимально облегчить установку и наладку работы программного обеспечения на крупных промышленных производствах и «подружить» между собой роботов, выполняющих разные задачи. Это позволит бизнесу снизить издержки на внедрение нового аппаратного и программного обеспечения, поскольку на высокоточных производствах и проектах, предусматривающих внедрение роботов, стоимость ПО может достигать 60% стоимости проекта.

Проект находится на стадии готовности: подтверждено ценностное предложение и доказана пригодность языка в эксплуатации. Разработкой уже заинтересовались японские производители промышленных роботов FANUC и немецкие партнеры в области автоматизации сборки и кооперации группы роботов. «Трансформация 2.0». Опыт роста технологической зрелости ритейлера «Лента» представлен на TAdviser SummIT 23.8 т


Традиционный метод программирования промышленных роботов — это программирование обучением. Робота берут за хобот и показывают серию положений: надо встать так, тут захват должен быть зажат, тут разжат, — а робот это запоминает и повторяет.

RCML позволяет объединять в одной производственной цепочке роботов разных производителей: общие параметры задачи вносятся в систему на языке RCML. Система знает внутренние коды роботов наиболее популярных производителей и вычисляет, что должен сделать каждый робот — перенести заготовку, проварить, проклеить, просверлить отверстие, — чтобы получить готовое изделие.

RCML позволяет объединять в одной производственной цепочке роботов разных производителей: общие параметры задачи вносятся в систему на языке RCML. Система знает внутренние коды роботов наиболее популярных производителей и вычисляет, что должен сделать каждый робот — перенести заготовку, проварить, проклеить, просверлить отверстие, — чтобы получить готовое изделие.

Партнёрская сеть

Чтобы увеличить продажи, основатели RCML развивают сеть партнерств, так как в секторе промышленной робототехники предприятие чаще покупает комплекс из различных решений, а не отдельные компоненты. Сейчас среди партнеров пермской компании RCML крупные производителей промышленных роботов — такие как Kuka, ABB и FANUC[1].

Формат продаж

Компания RCML из Перми продает годовую подписку на универсальный контроллер для промышленных роботов за $1,5 тыс., который позволяет собирать производственные цепочки из роботов разных производителей, экономить на их настройке и тем самым снижать себестоимость производства. На сентябрь 2017 года такие лицензии купили всего полтора десятка компаний (хотя в планах было 300 продаж до конца этого года).

Робототехника





СМ. ТАКЖЕ (523)


Подрядчики-лидеры по количеству проектов

За всю историю
2022 год
2023 год
2024 год

  Promobot (Промобот) (31)
  Cognitive Pilot (Когнитив Роботикс) (14)
  Яндекс (Yandex) (14)
  Nvidia (Нвидиа) (11)
  Сбербанк (10)
  Другие (516)

  Mains Lab (Мэйнс Лаборатория) (2)
  Яндекс (Yandex) (2)
  Московский центр инновационных технологий в здравоохранении (2)
  Сбербанк (1)
  Гриндата (GreenData) (1)
  Другие (45)

  Fora Robotics (Фора Роботикс) (2)
  Яндекс (Yandex) (2)
  Инфосистемы Джет (2)
  Яндекс.Облако (Yandex Cloud) (2)
  Департамент информационных технологий Москвы (ДИТ) (2)
  Другие (46)

  GlowByte, ГлоуБайт (ранее Glowbyte Consulting, ГлоуБайт Консалтинг) (2)
  Университет Иннополис (2)
  Яндекс (Yandex) (2)
  Наносемантика (Nanosemantics Lab) (2)
  Авантелеком (2)
  Другие (60)

Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров

За всю историю
2022 год
2023 год
2024 год

  Promobot (Промобот) (10, 32)
  ABB Group (8, 23)
  Cognitive Pilot (Когнитив Роботикс) (3, 21)
  Cognitive Technologies (Когнитивные технологии) (1, 21)
  Яндекс (Yandex) (2, 11)
  Другие (600, 145)

  Транспорт будущего (2, 1)
  Бирюч-НТ Инновационный Центр (2, 1)
  Эфко ГК (2, 1)
  Cognitive Technologies (Когнитивные технологии) (1, 1)
  Promobot (Промобот) (1, 1)
  Другие (13, 13)

  Fora Robotics (Фора Роботикс) (1, 2)
  Intuitive Surgical (1, 1)
  НИТУ МИСиС (Национальный исследовательский технологический университет) (1, 1)
  Яндекс (Yandex) (1, 1)
  Aripix Robotics (Арипикс Роботикс) (1, 1)
  Другие (5, 5)

  Pudu Robotics (Pudu Technology) (1, 2)
  Яндекс (Yandex) (1, 2)
  КиберСклад (1, 1)
  Геоскан (Geoscan) (1, 1)
  Intuitive Surgical (1, 1)
  Другие (1, 1)

Распределение систем по количеству проектов, не включая партнерские решения

За всю историю
2022 год
2023 год
2024 год

  Promobot - 26
  Cognitive Agro Pilot Система автоматического вождения - 21
  ABB IRB Промышленные роботы - 19
  Da Vinci (робот-хирург) - 11
  Яндекс.Ровер - 10
  Другие 129

  Роббо Класс - 1
  Эфко: Hi-Fly Taxi Аэротакси - 1
  Лаборатория знаний: Neuro Angel - 1
  YaCuAi Робот Unit - 1
  Gaskar Group Hive Автономные дронопорты - 1
  Другие 9

  For-1 Антропоморфный робот - 2
  Aripix A1 Робот-манипулятор - 1
  МИСиС и 3D Bioprinting Solutions: 3D-биопринтер в виде роборуки для применения в операционной in situ - 1
  Dobot CR-серия Коллаборативные роботы - 1
  Robotech: RP-серия Роботы-паллетайзеры - 1
  Другие 2

  Pudu CC1 Робот-уборщик - 2
  Яндекс.Ровер - 2
  Геоскан БАС (Беспилотные авиационные системы самолетного типа) - 1
  Da Vinci (робот-хирург) - 1
  Роботы КиберСклад - 1
  Другие 1