Разработчики: | Intel |
Технологии: | Процессоры, Робототехника |
Содержание |
В 2017-2018 годах Машинное обучение выходит из исследовательских лабораторий в практику и пробивается в пользовательские устройства, как теперь говорят, «на границу». С подачи компании ARM такого рода решения называют edge machine learning (edge переводится как острие, ребро, граница).
Приобретенные Intel технологии калифорнийской компании Movidius открыли ей дорогу на рынок глубокого машинного обучения и компьютерного зрения, а процессор Movidius Myriad X, выпущенный в 2017 году, позволил корпорации войти в сегмент edge machine learning.
Movidius к моменту приобретения со стороны Intel более десяти лет производила интеллектуальную собственность (IP) в форме документации для производства процессоров ISAAC, Myriad 1, Myriad 2. Ее последнее достижение до перехода в состав Intel было связано с устройством в формате USB-флэшки Fathom с процессором Myriad 2, способным работать совместно с процессором ARM под управлением Linux.
Fathom стоит всего $79 и используется в дронах, роботах, устройствах IoT и видеонаблюдения.
Перед знакомством с Movidius следует отметить, что замыслы этой компании были детально описаны в документе, поданном в 2016 году в заявке на получение гранта от Еврокомиссии по проекту Horizon 2020 PROGRAMME.
Хронология разработок Movidius
2018
Выход Windows Machine Learning для Intel Movidius Myriad X
7 марта 2018 года на Windows Developer Day корпорация Microsoft объявила о новой версии Windows 10 - Windows Machine Learning (ML). Она как нельзя лучше соответствует интегрированной на чипе системе Intel Movidius Myriad X VPU. Их объединяет понятие «вывод» или inference - так специалисты по машинному обучению называют практическое использование готовых нейронных сетей в качестве инструмента на уровне edge machine learning. О соотношении процессов тренировки сети и вывода см. здесь.
Windows ML обеспечивает работу предварительно натренированных сетей на любых устройствах, поддерживаемых Windows 10 и, таким образом, позволяет разработчику применить натренированную сеть в каком-то конкретном приложении. До 2017-2018 годов для вывода, как правило, использовались локальные или облачные CPU или GPU, что крайне неэффективно и существенно ограничивает область применения, например, в тех автономных мобильных устройствах, где требуется работа с изображением. Как DevOps-сервис помогает «разгрузить» высоконагруженные системы BPMSoft
Без жесткой привязки к машинному зрению сходная задача автономизации процессов вывода решается на базе процессора ARM в проекте Trillium, а Intel предлагает качественно новый процессор для работы исключительно с изображениями Intel Vision Processing Units (VPU) с именем собственным Movidius Myriad X.
Этот специализированный чип служит для ускорения работы нейронных сетей на этапе вывода, поэтому маркетинг относит его к ИИ, хотя интеллектуальность все еще весьма условна. Признать этот чип разумным сложно, он просто умный.
2017
Выпуск Myriad X
Если Myriad 2 VPU, выпущенный в 2012 году (см подробнее ниже), был изначально задуман для задач машинного зрения, а уже потом успешно приспособлен к машинному обучению, то процессор Myriad X изначально адаптирован непосредственно к этому классу приложений. Поэтому в Myriad X до 16 увеличено число процессоров SHAVE и появился совершенно новый ускоритель Neural Compute Engine, что, по словам представителя компании, привело к 10-ти кратному повышению производительности на операциях с плавающей точкой. Это утверждение звучит несколько странно, поскольку для ускорения процессов вывода на нейронных сетях критичнее скорость работы на целочисленных операциях и операциях с фиксированной точкой, причем с пониженной точностью. По всей видимости именно на эти операции ориентирован ускоритель Neural Compute Engine, устройство которого не разглашается. Известно лишь то, что Neural Compute Engine - это аппаратный ускоритель для глубинных нейронных сетей, в котором интеллектуальный интерфейс памяти освободится от хорошо известного бутылочного горла, возникающего при обмене данными между памятью и процессором. Neural Compute Engine отличается низким потреблением энергии.
Еще один ускоритель в составе Myriad X VPU, попадающий в категорию специализированного железа (fixed-function hardware), предназначен для работы со стереоскопическими эффектами и глубиной изображения.
Появление устройств типа Myriad X VPU интересно тем, что они открывают качественно новые возможности. Известно, что около 90% информации человек получает с помощью зрения, около 9% — с помощью слуха и только 1% с помощью других органов чувств. По всей видимости что-то подобное будет справедливо и для компьютеров, вступающих во взаимодействие с окружающим миром. Myriad X VPU – один из первых шагов в этом направлении.
Пакет Neural Compute SDK и процессор для обработки изображений Myriad 2
Пакет Neural Compute SDK (NCSDK) обеспечивает компиляцию и исполнение нейронных сетей, созданных с использованием фреймворков Caffe или TensorFlow, на устройстве Intel Movidius Neural Compute Stick (Intel Movidius NCS).
Основу Intel Movidius NCS составляет процессор для обработки изображений (Vision Processing Unit,VPU) Intel Movidiu Myriad 2.
VPU Myriad 2 включает 4 Гбит LPDDR3 DRAM, ускорители для обработки изображения и массив из 12 векторных процессоров с архитектурой сверхдлинного командного слова (Very Long Instruction Word, VLIW), называемых в данном случае SHAVE. Эти процессоры позволяют распараллеливать работу, повышая таким образом скорость работы.
Movidius NCS подключается к процессору приложений (Application Processor, AP), в качестве которого можно использовать, например, Raspberry Pi и UP Squared board, подключаемый по интерфейсу USB.
Входящий в состав Myriad 2 VPU процессор LEON CPU, построенный по архитектуре SPARC, изначально пуст. При начале работы в него прошивается управляющее ПО. Это происходит при подключении Myriad 2 VPU к AP по USB. AP взаимодействует с Myriad VPU по интерфейсу Neural Compute API, AP открывает устройство и перекачивает управляющее ПО (firmware) из Neural Compute SDK в Movidius Neural Compute Stick. После чего хост-компьютер видит Movidius NCS как обычное устройство. Подключенное к USB 2.0 или USB 3.0, это устройство может загрузить в себя графы нейронных сетей и команды, управляющие работой нейронных сетей.
Наконец граф загружается в память DRAM по API, при этом процессор LEON координирует процесс получения графа и распределение его по процессорам SHAVE, служащим ускорителями нейронных сетей. Результат работы сетей возвращается по тому же интерфейсу. Кроме того LEON контролирует физику работы Movidius Neural Compute Stick.
В NCSDK входят средства для подготовки нейронных сетей на хосте – это mvNCCompile, mvNCCheck и mvNCProfile.
Примером использования Myriad 2 VPU могут служить:
- Квадрокоптеры нового поколения, способные распознавать условия посадки и подчиняться управлению посредством жестов
- Умные камеры Google Clips
До вхождения в Intel в 2016 году
Компания Movidius (урожденная Movidiа) в основном ирландская, причем настолько ирландская, что, выступая на ее 10-летнем юбилее в 2015 году, премьер-министр этой страны сказал, что Ирландия должна стать лидером в компьютерном зрении. Такое невинное преувеличение государственных возможностей простительно лидеру небольшой, но гордой страны.
Отцами-основателями Movidius стали научные сотрудники-математики из колледжа Святой Троицы в Дублине Дэвид Мэлони, Энди Нисбетт и Син Мител, а также Валентин Муросан из университета Тимишоара (Румыния). С 1994 по 2005 год их работа была ограничена исследованиями.
Успех Movidius заметно напоминает триумф Nvidia. Процессоры, принесшие этим двум компаниям, хотя и разных по своим масштабам, славу и деньги, в обоих случаях задумывались не совсем для тех целей, которым они стали служить. Компания Movidius было создана задолго до бума нейронных сетей. На первых порах целью было создание процессора, позволяющего ускорить решения задач игровой физики. Так называют симуляцию законов Ньютона в виртуальных средах.
Ядро последних самостоятельных разработок - мультиядерный векторный процессор SHAVE с низким энергопотреблением. В 2007 был произведен первый экспериментальный чип ISAAC, через год – второй SABRE, в 2010 первый серийный процессор, в 2012 году - Mуriad 2. Последней самостоятельной разработкой стал набор Deep Learning Development Kit и «флэшка» Neural Compute Stick.
Робототехника
- Роботы (робототехника)
- Робототехника (мировой рынок)
- Обзор: Российский рынок промышленной робототехники 2019
- Карта российского рынка промышленной робототехники
- Промышленные роботы в России
- Каталог систем и проектов Роботы Промышленные
- Топ-30 интеграторов промышленных роботов в России
- Карта российского рынка промышленной робототехники: 4 ключевых сегмента, 170 компаний
- Технологические тенденции развития промышленных роботов
- В промышленности, медицине, боевые (Кибервойны)
- Сервисные роботы
- Каталог систем и проектов Роботы Сервисные
- Collaborative robot, cobot (Коллаборативный робот, кобот)
- IoT - IIoT - Цифровой двойник (Digital Twin)
- Компьютерное зрение (машинное зрение)
- Компьютерное зрение: технологии, рынок, перспективы
- Как роботы заменяют людей
- Секс-роботы
- Роботы-пылесосы
- Искусственный интеллект (ИИ, Artificial intelligence, AI)
- Обзор: Искусственный интеллект 2018
- Искусственный интеллект (рынок России)
- Искусственный интеллект (мировой рынок)
- Искусственный интеллект (рынок Украины)
- В банках, медицине, радиологии, ритейле, ВПК, производственной сфере, образовании, Автопилот, транспорте, логистике, спорте, СМИ и литература, видео (DeepFake, FakeApp), музыке
- Национальная стратегия развития искусственного интеллекта
- Национальная Ассоциация участников рынка робототехники (НАУРР)
- Российская ассоциация искусственного интеллекта
- Национальный центр развития технологий и базовых элементов робототехники
- Международный Центр по робототехнике (IRC) на базе НИТУ МИСиС
- Машинное обучение, Вредоносное машинное обучение, Разметка данных (data labeling)
- RPA - Роботизированная автоматизация процессов
- Видеоаналитика (машинное зрение)
- Машинный интеллект
- Когнитивный компьютинг
- Наука о данных (Data Science)
- DataLake (Озеро данных)
- BigData
- Нейросети
- Чатботы
- Умные колонки Голосовые помощники
- Безэкипажное судовождение (БЭС)
- Автопилот (беспилотный автомобиль)
- Беспилотные грузовики
- Беспилотные грузовики в России
- В мире и России
- Летающие автомобили
- Электромобили
Подрядчики-лидеры по количеству проектов
Promobot (Промобот) (31)
Cognitive Pilot (Когнитив Роботикс) (14)
Яндекс (Yandex) (14)
Nvidia (Нвидиа) (11)
Cognitive Technologies (Когнитивные технологии) (10)
Другие (503)
ABB Group (7)
Promobot (Промобот) (4)
Ростелеком (3)
АББ Россия (ABB) (3)
IPavlov (Айпавлов) (2)
Другие (59)
Mains Lab (Мэйнс Лаборатория) (2)
Яндекс (Yandex) (2)
Московский центр инновационных технологий в здравоохранении (2)
НИТУ МИСиС (Национальный исследовательский технологический университет) (1)
YaCuAi (1)
Другие (45)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
Promobot (Промобот) (9, 32)
ABB Group (8, 23)
Cognitive Pilot (Когнитив Роботикс) (3, 21)
Cognitive Technologies (Когнитивные технологии) (1, 21)
Яндекс (Yandex) (2, 11)
Другие (581, 143)
ABB Group (2, 11)
Promobot (Промобот) (2, 4)
Cognitive Pilot (Когнитив Роботикс) (1, 2)
Gaskar Group (Гаскар Интеграция) (1, 2)
Ronavi Robotics, Ронави Роботикс (ранее Ронави логистические системы) (1, 2)
Другие (10, 11)
Транспорт будущего (2, 1)
Бирюч-НТ Инновационный Центр (2, 1)
Эфко ГК (2, 1)
YaCuAi (1, 1)
Лаборатория знаний (1, 1)
Другие (13, 13)
Fora Robotics (Фора Роботикс) (1, 2)
Aripix Robotics (Арипикс Роботикс) (1, 1)
Rozum Robotics (Розум Роботикс) (1, 1)
Роботех (Robotech) (1, 1)
Яндекс.Маркет (1, 1)
Другие (5, 5)
Pudu Robotics (Pudu Technology) (1, 2)
Яндекс (Yandex) (1, 2)
КиберСклад (1, 1)
Intuitive Surgical (1, 1)
Геоскан (Geoscan) (1, 1)
Другие (0, 0)
Распределение систем по количеству проектов, не включая партнерские решения
Promobot - 26
Cognitive Agro Pilot Система автоматического вождения - 21
ABB IRB Промышленные роботы - 19
Da Vinci (робот-хирург) - 11
Яндекс.Ровер - 10
Другие 127
ABB IRB Промышленные роботы - 8
YuMi (Мобильный коллаборативный робот) - 4
Promobot - 4
Cognitive Agro Pilot Система автоматического вождения - 2
Ronavi Robotics: H-серия Роботы для обслуживания складов - 2
Другие 11
NTR Robotics (БПЛА для закрытых пространств) - 1
YaCuAi Робот Unit - 1
Gaskar Group Hive Автономные дронопорты - 1
Astabot Робот-палетный перевозчик - 1
МИСиС и 3D Bioprinting Solutions: 3D-биопринтер в виде роборуки для применения в операционной in situ - 1
Другие 9
Подрядчики-лидеры по количеству проектов
Т1 Интеграция (ранее Техносерв) (4)
МЦСТ (4)
Микрон (Mikron) (4)
Lenovo (4)
ИНЭУМ им. И.С. Брука (3)
Другие (48)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
МЦСТ (8, 22)
Микрон (Mikron) (2, 9)
Oracle (1, 7)
Nvidia (Нвидиа) (17, 6)
Intel (36, 5)
Другие (194, 15)
Байкал Электроникс (Baikal Electronics) (1, 2)
Huawei (1, 1)
Nvidia (Нвидиа) (1, 1)
Микрон (Mikron) (1, 1)
Intel (1, 1)
Другие (0, 0)
Распределение систем по количеству проектов, не включая партнерские решения
Микрон Интегральные микросхемы MIK - 9
Эльбрус - 8
Oracle SPARC - 7
Intel Xeon Scalable - 5
Эльбрус 4.4 - 4
Другие 23
Baikal-M - 2
Huawei Kunpeng (процессоры) - 1
Nvidia Tesla - 1
Intel Xeon Scalable - 1
Микрон Интегральные микросхемы MIK - 1
Другие 0